高中阶段学习难度、强度、容量加大,学习负担及压力明显加重,作为学生要学会对知识点进行

利用导数求函数单调性的基本方法:设函数yf(x)在区间(a,b)内可导,(1)如果恒f(x)0,则函数yf(x)在区间(a,b)上为增函数;(2)如果恒f(x)0,则函数yf(x)在区间(a,b)上为减函数;(3)如果恒f(x)0,则函数yf(x)在区间(a,b)上为常数函数.

利用导数求函数单调性的基本步骤:①求函数yf(x)的定义域;②求导数f(x);③解不等式f(x)0,解集在定义域内的不间断区间为增区间;④解不等式f(x)0,解集在定义域内的不间断区间为减区间.

反过来,也可以利用导数由函数的单调性解决相关问题(如确定参数的取值范围):设函数yf(x)在区间(a,b)内可导,

(3)如果函数yf(x)在区间(a,b)上为常数函数,则f(x)0恒成立.

(1)确定函数f(x)的定义域;(2)求导数f(x);(3)求方程f(x)0的全部实根,x1x2xn,顺次将定义域分成若干个小区间,并列表:x变化时,f(x)和f(x)值的变化情况:

如果函数f(x)在定义域I内存在x0,使得对任意的xI,总有f(x)f(x0),则称f(x0)为函数在定义域上的值.函数在定义域内的极值不一定,但在定义域内的最值是的.

求函数f(x)在区间[a,b]上的值和最小值的步骤:(1)求f(x)在区间(a,b)上的极值;

(2)将第一步中求得的极值与f(a),f(b)比较,得到f(x)在区间[a,b]上的值与最小值.

不等式f(x)0恒成立的充要条件是b0;不等式f(x)0恒成立的充要条件是a0.

实际生活求解(小)值问题,通常都可转化为函数的最值.在利用导数来求函数最值时,一定要注意,极值点的单峰函数,极值点就是最值点,在解题时要加以说明.

公理3如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线、空间点、直线、平面之间的位置关系:

平面外一点A与平面一点B的连线和平面内不经过点B的直线是异面直线(判定);

判定:不在一个平面内的一条直线和平面内的一条直线平行,则该直线平行于此平面(由线线平行得出)

性质:两个平面平行,则其中一个平面内的直线平行于另一个平面;如果两个平行平面同时与第三个平面相交,那么它们的交线、常利用三角形中位线、平行四边形对边、已知直线作一平面找其交线

判定:如果一条直线与一个平面内的两条相交的直线都垂直,则该直线与此平面垂直

推论:如果在两条平行直线中,有一条垂直于一个平面,那么另一条也垂直于这个平面

直线)度,平面内的一条斜线和它在平面内的射影说成的锐角,特别规定垂直90度,在平面内或者平行0度

定义:两个平面所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(二面角的平面角:以二面角的棱上任一点为端点,在两个半平面内分别作垂直于棱的两条射线所成的角)

如果函数 y = f(x) 在开区间 I 内每一点都可导,就称函数f(x)在区间 I 内可导。这时函数 y = f(x) 对于区间 I 内的每一个确定的 x 值,都对应着一个确定的导数,这就构成一个新的函数,称这个函数为原来函数 y = f(x) 的导函数,记作 y, f(x), dy/dx, df(x)/dx。导函数简称导数。

(2)f(x)0的解集与定义域的交集的对应区间为增区间; f(x)0的解集与定义域的交集的对应区间为减区间

★高中数学基本知识点★高三数学的基础知识点归纳分析★高三数学基础知识点概括